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Abstract. A non-standard quantum deformation of the two-photon algebrah6 is constructed,
and its quantum universalR-matrix is given. Representations of this new quantum algebra are
studied on the Fock space and translated into Fock–Bargmann realizations that provide a direct
formalism for the definition of deformed states of light. Finally, the isomorphism betweenh6

and the (1+ 1) Schr̈odinger algebra is used to introduce a new (non-standard) Hopf algebra
deformation of this latter symmetry algebra.

1. Introduction

The single-mode radiation field Hamiltonian that describes the generation of a squeezed
coherent state is given by [1]

H = h̄ω(a+a− + 1
2)+ f1(t) a+ + f1(t)

∗a− + f2(t) a
2
+ + f2(t)

∗a2
− (1.1)

wherea− and a+ are the generators of the boson algebra: [a−, a+] = 1. The dynamical
symmetry algebra of this Hamiltonian involving two-photon processes is the ‘two-photon
algebra’h6, a six-dimensional non-semisimple Lie algebra generated by

N = a+a− A+ = a+ A− = a−
M = 1 B+ = a2

+ B− = a2
− (1.2)

whereN is the number operator andM is a central generator. The commutation rules
among these generators are

[N,A+] = A+ [N,A−] = −A− [A−, A+] = M
[N,B+] = 2B+ [N,B−] = −2B− [B−, B+] = 4N + 2M

[A+, B−] = −2A− [A+, B+] = 0 [M, ·] = 0

[A−, B+] = 2A+ [A−, B−] = 0. (1.3)

Three relevant subalgebras ofh4 arise: the Heisenberg–Weyl algebrah3 (generated by
A+, A−,M), the oscillator algebrah4 (which ish3 enlarged with the number generatorN )
and thesu(1, 1) algebra (defined byB ′+, B

′
−, N

′, whereN ′ = (N +M/2)/2, B ′± = B±/2).
Thus we have the sequenceh3 ⊂ h4 ⊂ h6. The essential role played by these three
symmetries in the algebraic description of coherent, squeezed and intelligent states of light
is well known, and it has been recently unified within a two-photon algebra approach in
[2]. Our paper introduces a quantum deformation of the two-photon algebra and presents
its potential algebraic abilities in order to construct deformed (and non-classical) states of
light.
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In section 2, a non-standard quantum (Hopf algebra) deformation ofh6 is obtained by
making use of the Jordanian deformation of its subalgebrah4 [3]. In this example, it will
become clear that althoughB+ coincides with the square ofA+ in the representation (1.2),
this relation is no longer true in general. In spite of this fact, it is also shown that the
quantum universalR-matrix associated to the originalh4 deformation is just the quantum
R-matrix for the two-photon quantization.

In general, applications in quantum optics of all the algebras mentioned before, came
initially from representations like (1.2) in terms of creation and annihilation operators (boson
realizations). Section 3 deals with the corresponding deformation of the boson realization
(1.2). From an algebraic point of view, the resultant representation can be translated into
a realization in terms of operators acting on the Hilbert space of entire analytic functions
where the construction of [2] holds. In this context, it is shown how the linear differential
operators of the undeformed case can be transformed after quantization either into more
complicated differential operators or into differential-difference ones. The different role
played byA+ andA− after quantization is emphasized, and the physical inequivalence of
algebraically equivalent quantizations is stressed.

The second main purpose of the work is to show the usefulness (that, to our knowledge,
has not been used yet) of the isomorphism between the two-photon algebra and the (1+ 1)
Schr̈odinger algebra. In particular, we shall present in section 4 a new quantum deformation
of the latter algebra endowed with a Hopf algebra structure, something that is left out in
the previousq-deformations so far obtained [4, 5]. As a byproduct, this isomorphism shows
that the extended (1+ 1) Galilei algebra is also a relevant subalgebra ofh6.

2. The deformation

The non-standard (or Jordanian) quantum deformation of the oscillator algebrah4 was
introduced in [3] (the essentials of Lie bialgebra quantizations needed in order to derive the
following results can be found there; a comprehensive presentation of the subject is given
in [6]). The starting point of the construction was the (coboundary) Lie bialgebra(h4, δ(r))

defined by the classicalr-matrix

r = zN ∧ A+ (2.1)

(which is a solution of the classical Yang–Baxter equation) whereN andA+ belong toh4.
Therefore, the embeddingh4 ⊂ h6 allows us to consider (2.1) as the generating object for
a Jordanian deformation ofh6 by takingN andA+ as generators for this algebra. The
cocommutators of the two-photon Lie bialgebra(h6, δ(r)) are obtained from the relation
δ(X) = [1⊗X +X ⊗ 1, r] and read

δ(A+) = 0 δ(M) = 0

δ(N) = zN ∧ A+ δ(B+) = −2zB+ ∧ A+
δ(A−) = z(A− ∧ A+ +N ∧M)
δ(B−) = 2z(B− ∧ A+ +N ∧ A−). (2.2)

Note that δ(B−) contains the termN ∧ A−, which involves two ‘non-primitive’
generators. As a consequence (see [3]) it is not possible to ‘exponentiate’ directly the
first order in the deformation given by the Lie bialgebra (2.2) in order to obtain the full
coproduct of the quantum deformation we are looking for. However, by assuming that
the right quantum structure is not far away from the exponentiation of (2.2), the following
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coassociative coproduct for the quantum two-photon algebraUz(h6) can be obtained:

1(A+) = 1⊗ A+ + A+ ⊗ 1 1(M) = 1⊗M +M ⊗ 1

1(N) = 1⊗N +N ⊗ ezA+ 1(B+) = 1⊗ B+ + B+ ⊗ e−2zA+

1(A−) = 1⊗ A− + A− ⊗ ezA+ + zN ⊗ ezA+M

1(B−) = 1⊗ B− + B− ⊗ e2zA+ + zN ⊗ ezA+(A− − zMN)− zA− ⊗ ezA+N. (2.3)

Deformed commutation rules consistent with (2.3) are given in the form

[N,A+] = ezA+ − 1

z
[N,A−] = −A− [A−, A+] = M ezA+

[N,B+] = 2B+ [N,B−] = −2B− − zA−N [M, ·] = 0

[B−, B+] = 2(1+ e−zA+)N + 2M − 2zA−B+
[A+, B−] = −(1+ ezA+)A− + z ezA+MN [A+, B+] = 0

[A−, B+] = 2
1− e−zA+

z
[A−, B−] = −zA2

−. (2.4)

Finally, counitε and antipodeγ for Uz(h6) read

ε(X) = 0 for X ∈ {N,A+, A−, B+, B−,M} (2.5)

γ (A+) = −A+ γ (M) = −M
γ(N) = −N e−zA+ γ (B+) = −B+ e2zA+

γ (A−) = −A− e−zA+ + zNM e−zA+

γ (B−) = −B− e−2zA+ − zA− e−2zA+. (2.6)

Note that the non-standard quantum oscillator algebraUz(h4) is a Hopf subalgebra of
Uz(h6). The quantum universalR-matrix for Uz(h4)

R = exp{−zA+ ⊗N} exp{zN ⊗ A+} (2.7)

was found in [3]. In fact, this elementR can be proven to be the quantumR-matrix for
Uz(h6) whenA+ andN are considered as generators of the latter algebra (see the appendix).
Recall that its classical counterpart (2.1) has been used to define the whole Lie bialgebra
(2.2), and that this kind of embedding has been shown to preserve the quantumR-matrix
for the initial subalgebra in other examples of non-standard deformations (see [7, 8]).

3. Representation theory

The physical relevance of the two-photon algebra comes from the Hamiltonians of the type
(1.1), in which a certain boson representation forh6 gives a dynamical symmetry of the
problem. Let us generalize such a kind of representation to the quantum case.

3.1. Quantum boson realizations

A realization ofh6 (1.3) in terms of the boson generatorsa−, a+ is given by (1.2). When
the previous boson operators act on the number states Hilbert space spanned by{|m〉}∞m=0
the action of the two-photon operators on these states is

N |m〉 = m|m〉 M|m〉 = |m〉
A+|m〉 =

√
m+ 1|m+ 1〉 A−|m〉 =

√
m|m− 1〉

B+|m〉 =
√
(m+ 1)(m+ 2)|m+ 2〉 B−|m〉 =

√
m(m− 1)|m− 2〉. (3.1)
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A part of this representation can be deformed by considering the results given in [9]
concerning the subalgebra defined by the quantum oscillatorUz(h4). In particular, by setting
β = 0, δ = 1, and by replacing 2z→ z in those results, we get the realization

N = eza+ − 1

z
a− A+ = a+ A− = eza+a− M = 1. (3.2)

The remaining generators are easily found to be realized as

B+ =
(

1− e−za+

z

)2

B− = eza+a2
−. (3.3)

Therefore, the classical identificationB+ = A2
+ is no longer valid in the quantum case.

Moreover, the coproduct (2.3) for1(B+) is strongly different from1(A+)2 (in fact, this
property appears at a non-deformed level as well [10]).

Now, by taking into account the fact that

eza+|m〉 = |m〉 +
∞∑
k=1

zk

k!

√
(m+ k)!
m!

|m+ k〉 (3.4)

the action of the generators ofUz(h6) on the number states{|m〉}∞m=0 reads

A+|m〉 =
√
m+ 1|m+ 1〉 M|m〉 = |m〉

A−|m〉 =
√
m|m− 1〉 +m

∞∑
k=0

zk+1

(k + 1)!

√
(m+ k)!
m!

|m+ k〉

N |m〉 = m|m〉 +m
∞∑
k=1

zk

(k + 1)!

√
(m+ k)!
m!

|m+ k〉

B+|m〉 =
√
(m+ 1)(m+ 2)|m+ 2〉

+
∞∑
k=1

(−2+ 2k+2)
(−z)k
(k + 2)!

√
(m+ k + 2)!

m!
|m+ k + 2〉

B−|m〉 =
√
m(m− 1)|m− 2〉 + z√m(m− 1)|m− 1〉

+m(m− 1)
∞∑
k=0

zk+2

(k + 2)!

√
(m+ k)!
m!

|m+ k〉. (3.5)

The numbers〈m|X|m′〉 where〈m|m′〉 = δm,m′ give rise to the matrix elements of this
infinite-dimensional representation; explicitly,

A+=



0 . . . .

1 0 . . .

.
√

2 0 . .

. .
√

3 0 .

. . .
√

4 0
. . .

 B+=



0 . . . .

0 0 . . .√
2 0 0 . .

−√6z
√

6 0 0 .
7√
6
z2 −2

√
6z 2

√
3 0 0

. . .



A−=



. 1 . . .

. z
√

2 . .

. 1√
2
z2 2z

√
3 .

. 1√
6
z3
√

3z2 3z
√

4

. 1√
24
z4 2√

3
z3 3z2 4z

. . .


B−=



. .
√

2 . .

. .
√

2z
√

6 .

. . z2 2
√

3z 2
√

3
. . 1√

3
z3 3z2 6z

. . 1
2
√

3
z4 2z3 6z2

. . .
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N =



. . . . .

. 1 . . .

. 1√
2
z 2 . .

. 1√
6
z2
√

3z 3 .

. 1√
24
z3 2√

3
z2 3z 4

. . .


M =



1 . . . .

. 1 . . .

. . 1 . .

. . . 1 .

. . . . 1
. . .

 . (3.6)

Note the characteristic appearance of monomials inz as entries of the deformed matrices.
In this respect, see [9, 11–15] for representations of non-standard quantum algebras where
this feature arises recurrently.

3.2. Fock–Bargmann realizations

The deformed boson realization (3.2)–(3.3) can be immediately translated into differential
operators acting on the space of entire analytic functionsf (α) (the Fock–Bargmann (FB)
representation [16]):

N = ezα − 1

z

d

dα
A+ = α A− = ezα

d

dα
M = 1

B+ =
(

1− e−zα

z

)2

B− = ezα
d2

dα2
. (3.7)

These expressions would be the starting point for a general study of deformed states of
light generated by the quantum deformation introduced here (see [2] for the classical
construction). However, there also exists another set of operators defined on the FB
space and algebraically linked to this deformation. It is easy to check that the following
automorphism ofh6

N →−N A+ → −A− A− → −A+
M →−M B+ → −B− B− → −B+ (3.8)

and the transformation of the deformation parameter

z→−z (3.9)

transforms the Lie bialgebra (2.2) into

δ(A−) = 0 δ(M) = 0

δ(N) = zN ∧ A− δ(B−) = −2zB− ∧ A−
δ(A+) = z(A+ ∧ A− +N ∧M)
δ(B+) = 2z(B+ ∧ A− +N ∧ A+). (3.10)

Therefore, (3.10) and (2.2) are equivalent as Lie bialgebras, and the quantization of the
former leads to expressions that can be deduced from those given in section 2 by making
use of the automorphism (3.8) and (3.9). The essential feature of this deformation is that
now A− and M are the primitive generators. We shall write only the set of resultant
deformed commutation rules:

[N,A−] = −ezA− − 1

z
[N,A+] = A+ [A−, A+] = M ezA−

[N,B−] = −2B− [N,B+] = 2B+ + zA+N [M, ·] = 0

[B+, B−] = −2(1+ e−zA−)N − 2M + 2zA+B−
[A−, B+] = (1+ ezA−)A+ − z ezA−MN [A−, B−] = 0
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[A+, B−] = −2
1− e−zA−

z
[A+, B+] = zA2

+. (3.11)

The corresponding FB realization for (3.11) reads (we write d/dα = dα):

N = α
(

ezdα − 1

z

)
A+ = α ezdα A− = dα M = 1

B+ = (α2+ zα) ezdα B− =
(

1− e−zdα

z

)2

. (3.12)

The deformed boson realization would be obtained by substituting dα = a− andα = a+.
Note that (3.12) is a differential-difference realization; in particular, the action(

ezdα − 1

z

)
f (α) = f (α + z)− f (α)

z
(3.13)

corresponds to a discrete derivative. Therefore, (3.12) can be thought of as a certain
discretization of the usual FB representation.

From a physical point of view, relevant states of the radiation field appear as
eigenfunctions of the generators of the two-photon algebra in the FB representation [2].
Therefore, the two (algebraically equivalent) quantum deformations ofh6 presented here
give rise to different deformed eigenproblems on the space of analytic functions. This
procedure seems to be the most natural way for generating Jordanian (and, in general,
quantum algebra) analogues of coherent, squeezed and intelligent states. A detailed analysis
of this construction and of its physical contents will be presented elsewhere, but we can
advance here that the former (3.7) (A+ primitive) would originate a class of smooth deformed
states, and the latter (3.12) (A− primitive) will be linked to a set of states including some
intrinsic discretization. In both cases, the precise shape of the deformation is a consequence
of the compatibility with the deformed composition rule of representations given by the
corresponding quantum coproduct.

4. A quantum (1+ 1) Schrödinger algebra

The (1+ 1)-dimensional Schrödinger algebraS(1+ 1) [17, 18] is a six-dimensional Lie
algebra generated byH (time translation),P (space translation),K (Galilean boost),D
(dilation), C (conformal transformation) andM (mass); it is endowed with the following
commutation rules:

[D,P ] = −P [D,K] = K [K,P ] = M
[D,H ] = −2H [D,C] = 2C [H,C] = D
[K,H ] = P [K,C] = 0 [M, ·] = 0

[P,C] = −K [P,H ] = 0. (4.1)

The subalgebra generated by{H,P,K,M} defines a (1+ 1) extended Galilei algebra and
the one spanned by{D,C,H } closes as ansl(2,R) structure.

The physical interest inS(1+1) comes from the fact that (4.1) is the Lie algebra of the
symmetry group of the (1+ 1)-dimensional Schrödinger equation. Recently, the symmetry
analysis of some differential-difference generalizations of this outstanding equation has
originated variousq-analogues ofS(1+ 1), none of them endowed with a known Hopf
algebra structure [4, 5]. However, an isomorphism betweenS(1+ 1) andh6 [19], can be
explicitly given as follows,

D = −N − 1
2M P = A+ K = A− H = 1

2B+ C = 1
2B− (4.2)
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keepingM as the central generator for both algebras. Therefore, starting from the results
presented in previous sections and by using (4.2), it is immediate to obtain a complete (non-
standard) quantum deformation ofS(1+ 1). Its Lie bialgebra is provided by the classical
r-matrix

r = zP ∧D + 1
2zP ∧M (4.3)

with cocommutators given by

δ(P ) = 0 δ(M) = 0 δ(H) = −2zH ∧ P
δ(K) = z(K ∧ P −D ∧M) δ(D) = z(D ∧ P + 1

2M ∧ P)
δ(C) = z(2C ∧ P +K ∧D + 1

2K ∧M). (4.4)

The coproduct and the commutation rules of the Hopf algebraUz(S(1+ 1)) are

1(P ) = 1⊗ P + P ⊗ 1 1(M) = 1⊗M +M ⊗ 1

1(H) = 1⊗H +H ⊗ e−2zP

1(K) = 1⊗K +K ⊗ ezP − z
(
D + 1

2
M

)
⊗ ezPM

1(D) = 1⊗D +D ⊗ ezP + 1

2
M ⊗ (ezP − 1)

1(C) = 1⊗ C + C ⊗ e2zP − z
2

(
D + 1

2
M

)
⊗ ezP

(
K + z

(
D + 1

2
M

)
M

)
+ z

2
K ⊗ ezP

(
D + 1

2
M

)
(4.5)

[D,P ] = 1− ezP

z
[D,K] = K [K,P ] = M ezP

[D,H ] = −2H [D,C] = 2C − z
2
K

(
D + 1

2
M

)
[H,C] = 1

2
(1+ e−zP )

(
D + 1

2
M

)
− 1

2
M + zKH

[K,H ] = 1− e−zP

z
[K,C] = − z

2
K2 [M, ·] = 0

[P,C] = −1

2
(1+ ezP )K − z

2
ezPM

(
D + 1

2
M

)
[P,H ] = 0. (4.6)

Note that neither{H,P,K,M} (the extended Galilei algebra) nor{D,C,H } define
a Hopf subalgebra of this deformation. However, the generators{D,P,K,M} do close
as a Hopf subalgebra (they were the oscillator generators inh6). Finally, the (factorized)
universalR-matrix for Uz(S(1+ 1)) is written as

R = exp{zP ⊗D} exp{ 12zP ⊗M} exp{− 1
2zM ⊗ P } exp{−zD ⊗ P }. (4.7)

This connection between the two-photon and the (1+ 1) Schr̈odinger algebras deserves
further analysis. From it, the extended (1+ 1) Galilei algebra appears as another relevant
subalgebra ofh6 and, in turn, the oscillator algebrah4 can be embedded withinS(1+ 1).
On the other hand, the isomorphism (4.2) exhibits again, in the geometrical language of the
Schr̈odinger symmetry, the physical inequivalence between the (algebraically equivalent)
quantizations (2.4) and (3.11) shown in section 3 by constructing FB realizations: the first
deformation makesA+ = P the primitive generator, a role played in the second one by the
boostA− = K.
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5. Concluding remarks

To end with, a discussion concerning possible∗-structures on the previous quantum algebras
seems to be appropriate. Even in the Schrödinger algebra picture the answer is not
immediate: it can be checked that the operation

X∗i := −Xi z = iα α ∈ R (5.1)

is a ∗-involution for the Hopf subalgebra spanned by{D,H,P,K,M}. However, the
conformal generatorC does not admit such a definition for the∗-involution due to ordering
problems in both the coproduct (4.5) and the commutation rules (4.6), and a modification
in (5.1) does not seem to exist for solving this problem.

In the two-photon basis, the usual∗-involutionA∗± = A∓ is also lost after deformation.
This is indeed consistent with the structural properties of the deformation we have
constructed, in whichA+ andA− play strongly different roles. However, in our opinion,
this fact does not preclude all possible physical contents of this quantum deformation of
h6. For instance, the ‘continuous’ deformation (3.7) of the FB realization could give rise to
well defined analytic eigenfunctions defining superpositions of number states whose physical
properties can be studied, and this construction does not depend on a precise∗-operation.
On the other hand, the discretization implied by the deformed FB realization (3.12) suggests
a redefinition of the inner product in the Bargmann space that should be taken into account
in order to analyse unitarity properties of the deformation introduced here.

Finally, it is worth recalling that quantum algebras are also meaningful algebraic
structures that generate integrable deformations of classical mechanical systems [20, 21].
In particular, the algebrah6 can be easily realized as a Poisson algebra through the usual
canonical coordinates and the Poisson bivector3 = ∂q ∧ ∂p as follows:

N = p q − 1
2 A+ = p A− = q

M = 1 B+ = p2 B− = q2. (5.2)

In this context, a linear combination of the generators ofh6 gives rise to an arbitrary
quadratic Hamiltonian that, following [21], can be deformed with the aid of the quantum
algebra presented here. It is easy to deduce that Poisson realizations deforming (5.2) can
be obtained from the boson realizations (3.7) and (3.12), and would lead to integrable
deformations containing either ezp contributions (in the caseA+ is primitive) or ezq terms
(whenA− is primitive).
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Appendix

As it was shown in [3] that the element (2.7) fulfils both the quantum Yang–Baxter equation
and the property

R1(X)R−1 = σ ◦1(X) for X ∈ {N,A+, A−,M} (A.1)
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whereσ is the flip operator:σ(a ⊗ b) = b ⊗ a. SinceUz(h4) ⊂ Uz(h6) we only need to
prove thatR also satisfies (A.1) for the two remaining generatorsB+ andB−. We shall
make use of the formula

ef1(X) e−f = 1(X)+
∞∑
n=1

1

n!
[f, [. . . [f,1(X)]]n) . . .] (A.2)

where the superindexn) meansn commutators. To begin with we takeX ≡ B+ and
f ≡ zN ⊗ A+. Straightforward computations lead to

[zN ⊗ A+, [. . . [zN ⊗ A+,1(B+)]]n) . . .] = B+ ⊗ e−2zA+(2zA+)n n > 1 (A.3)

so that

ezN⊗A+1(B+) e−zN⊗A+ = 1(B+)+
∞∑
n=1

B+ ⊗ e−2zA+ (2zA+)
n

n!

= 1⊗ B+ + B+ ⊗ e−2zA+ + B+ ⊗ e−2zA+(e2zA+ − 1)

= 1⊗ B+ + B+ ⊗ 1≡ 10(B+). (A.4)

On the other hand, we find that

[−zA+ ⊗N, [. . . [−zA+ ⊗N,10(B+)]]n) . . .] = (−2zA+)n ⊗ B+ n > 1 (A.5)

and the proof forB+ follows:

e−zA+⊗N10(B+) ezA+⊗N = 10(B+)+
∞∑
n=1

(−2zA+)n

n!
⊗ B+

= 1⊗ B+ + B+ ⊗ 1+ (e−2zA+ − 1)⊗ B+ = σ ◦1(B+). (A.6)

We consider nowX ≡ B− andf ≡ zN ⊗ A+; thus we have

[zN ⊗ A+,1(B−)] = zN ⊗ {ezA+(zMN − A−)− A−} − z2N2⊗ ezA+M

−2zB− ⊗ e2zA+A+ − z2A−N ⊗ e2zA+A+
+zA−N ⊗ (e2zA+ − ezA+)+ z2A− ⊗ ezA+A+N (A.7)

[zN ⊗ A+, [zN ⊗ A+,1(B−)]] = 2z2N2⊗ ezA+M + 4z2B− ⊗ e2zA+A2
+

+3z3A−N ⊗ e2zA+A2
+ − 2z2A−N ⊗ (e2zA+ − ezA+)A+

−z3A− ⊗ ezA+A2
+N. (A.8)

In general, a recurrence method gives (forn > 3)

[zN ⊗ A+, [. . . [zN ⊗ A+,1(B−)]]n) . . .] = B− ⊗ e2zA+(−2zA+)n

+z(2n − 1)A−N ⊗ e2zA+(−zA+)n + znA−N ⊗ (e2zA+ − ezA+)(−zA+)n−1

−zA− ⊗ ezA+(−zA+)nN. (A.9)

From (A.7)–(A.9), the following result is obtained:

g = ezN⊗A+1(B−) e−zN⊗A+ = 1(B−)+ zN ⊗ {ezA+(zMN − A−)− A−}

+
∞∑
n=1

B− ⊗ e2zA+ (−2zA+)n

n!

+z
∞∑
n=1

A−N ⊗ e2zA+

(
(−2zA+)n

n!
− (−zA+)

n

n!

)
+z

∞∑
n=0

A−N ⊗ (e2zA+ − ezA+)
(−zA+)n

n!
− z

∞∑
n=1

A− ⊗ ezA+
(−zA+)n

n!
N
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= 1⊗ B− + B− ⊗ e2zA+ − zA− ⊗ ezA+N − zN ⊗ A−
+B− ⊗ e2zA+(e−2zA+ − 1)+ zA−N ⊗ e2zA+(e−2zA+ − e−zA+)
+zA−N ⊗ (e2zA+ − ezA+) e−zA+ − zA− ⊗ ezA+(e−zA+ − 1)N

= 1⊗ B− + B− ⊗ 1− zN ⊗ A− − zA− ⊗N. (A.10)

Now, we have to compute (A.2) withf ≡ −zA+⊗N andg instead of1(X). In particular,

[−zA+ ⊗N, g] = z{ezA+(A− − zMN)+ A−} ⊗N − z2M ezA+ ⊗N2

+2zA+ ⊗ B− + z2A+ ⊗ A−N − z(ezA+ − 1)⊗ A−N − z2A+N ⊗ A−
(A.11)

[−zA+ ⊗N, [−zA+ ⊗N, g]] = 2z2M ezA+ ⊗N2+ 4z2A2
+ ⊗ B−

+3z3A2
+ ⊗ A−N − 2z2A+(ezA+ − 1)⊗ A−N − z3A2

+N ⊗ A− (A.12)

and forn > 3

[−zA+ ⊗N, [. . . [−zA+ ⊗N, g]]n) . . .] = z(2n − 1)(zA+)n ⊗ A−N + (2zA+)n ⊗ B−
−zn(zA+)n−1(ezA+ − 1)⊗ A−N − z(zA+)nN ⊗ A−. (A.13)

In this way, we complete the proof:

e−zA+⊗Ng ezA+⊗N = g + z{ezA+(A− − zMN)+ A−} ⊗N

+z
∞∑
n=1

(
(2zA+)n

n!
− (zA+)

n

n!

)
⊗ A−N +

∞∑
n=1

(2zA+)n

n!
⊗ B−

−z
∞∑
n=0

(zA+)n

n!
(ezA+ − 1)⊗ A−N − z

∞∑
n=1

(zA+)n

n!
N ⊗ A−

= 1⊗ B− + B− ⊗ 1− zN ⊗ A− + z ezA+(A− − zMN)⊗N
+z(e2zA+ − ezA+)⊗ A−N + (e2zA+ − 1)⊗ B−
−z ezA+(ezA+ − 1)⊗ A−N − z(ezA+ − 1)N ⊗ A− = σ ◦1(B−). (A.14)

Finally, notice thatR−1 = σ ◦R, that is,R is a triangularR-matrix.
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